
Appendix: Proof of Consistency of the Synodic Protocol

A1 The Basic Protocol

The Synod’s basic protocol, described informally in Section 2.3, is stated here
using modern algorithmic notation. We begin with the variables that a priest p
must maintain. First come the variables that represent information kept in his
ledger. (For convenience, the vote prevVote [p] used in Section 2.3 is replaced by its
components prevBal [p] and prevDec[p].)

outcome[p] The decree written in p’s ledger, or blank if there is nothing written
there yet.

lastTried [p] The number of the last ballot that p tried to begin, or −∞ if there was
none.

prevBal [p] The number of the last ballot in which p voted, or −∞ if he never
voted.

prevDec[p] The decree for which p last voted, or blank if p never voted.
nextBal [p] The number of the last ballot in which p agreed to participate, or −∞

if he has never agreed to participate in a ballot.

Next come variables representing information that priest p could keep on a slip of
paper:

status[p] One of the following values:
idle Not conducting or trying to begin a ballot
trying Trying to begin ballot number lastTried [p]
polling Now conducting ballot number lastTried [p]
If p has lost his slip of paper, then status[p] is assumed to equal idle
and the values of the following four variables are irrelevant.

prevVotes [p] The set of votes received in LastVote messages for the current ballot
(the one with ballot number lastTried [p]).



quorum[p] If status[p] = polling , then the set of priests forming the quorum of
the current ballot; otherwise, meaningless.

voters[p] If status[p] = polling , then the set of quorum members from whom p
has received Voted messages in the current ballot; otherwise, mean-
ingless.

decree[p] If status[p] = polling , then the decree of the current ballot; otherwise,
meaningless.

There is also the history variable B, which is the set of ballots that have been started
and their progress—namely, which priests have cast votes. (A history variable is one
used in the development and proof of an algorithm, but not actually implemented.)

Next come the actions that priest p may take. These actions are assumed to be
atomic, meaning that once an action is begun, it must be completed before priest
p begins any other action. An action is described by an enabling condition and a
list of effects. The enabling condition describes when the action can be performed;
actions that receive a message are enabled whenever a messenger has arrived with
the appropriate message. The list of effects describes how the action changes the
algorithm’s variables and what message, if any, it sends. (Each individual action
sends at most one message.)

Recall that ballot numbers were partitioned among the priests. For any ballot
number b, the Paxons defined owner(b) to be the priest who was allowed to use
that ballot number.

The actions in the basic protocol are allowed actions; the protocol does not
require that a priest ever do anything. No attempt at efficiency has been made; the
actions allow p to do silly things, such as sending another BeginBallot message to
a priest from whom he has already received a LastVote message.

Try New Ballot
Always enabled.

– Set lastTried [p] to any ballot number b, greater than its previous value, such
that owner(b) = p.

– Set status[p] to trying.
– Set prevVotes [p] to ∅.

Send NextBallot Message
Enabled whenever status[p]=trying.

– Send a NextBallot(lastTried [p]) message to any priest.

Receive NextBallot(b) Message
If b ≥ nextBal [p] then

– Set nextBal [p] to b.

Send LastVote Message
Enabled whenever nextBal [p] > prevBal [p].

– Send a LastVote(nextBal [p], v) message to priest owner(nextBal [p]), where
vpst = p, vbal = prevBal [p], and vdec = prevDec[p].



Receive LastVote(b, v) Message
If b = lastTried [p] and status[p] = trying , then

– Set prevVotes [p] to the union of its original value and {v}.
Start Polling Majority Set Q

Enabled when status[p] = trying and Q ⊆ {vpst : v ∈ prevVotes [p]}, where Q is a
majority set.

– Set status[p] to polling.
– Set quorum[p] to Q.
– Set voters[p] to ∅.
– Set decree[p] to a decree d chosen as follows: Let v be the maximum element

of prevVotes[p]. If vbal �= −∞ then d = vdec , else d can equal any decree.
– Set B to the union of its former value and {B}, where Bdec = d, Bqrm = Q,

Bvot = ∅, and Bbal = lastTried [p].

Send BeginBallot Message
Enabled when status[p] = polling .

– Send a BeginBallot (lastTried [p], decree[p]) message to any priest in quorum[p].

Receive BeginBallot (b, d) Message
If b = nextBal [p] > prevBal [p] then

– Set prevBal [p] to b.
– Set prevDec[p] to d.
– If there is a ballot B in B with Bbal = b [there will be], then choose any such

B [there will be only one] and let the new value of B be obtained from its old
value by setting Bvot equal to the union of its old value and {p}.

Send Voted Message
Enabled whenever prevBal [p] �= −∞.

– Send a Voted(prevBal [p], p) message to owner(prevBal [p]).

Receive Voted(b, q) Message
If b = lastTried [p] and status[p] = polling , then

– Set voters[p] to the union of its old value and {q}
Succeed
Enabled whenever status[p] = polling , quorum[p] ⊆ voters[p], and outcome[p] =
blank.

– Set outcome[p] to decree[p].

Send Success Message
Enabled whenever outcome[p] �= blank.

– Send a Success(outcome[p]) message to any priest.

Receive Success(d) Message
If outcome[p] = blank, then



– Set outcome[p] to d.

This algorithm is an abstract description of the real protocol performed by Paxon
priests. Do the algorithm’s actions accurately model the actions of the real priests?
There were three kinds of actions that a priest could perform “atomically”: receiv-
ing a message, writing a note or ledger entry, and sending a message. Each of these
is represented by a single action of the algorithm, except that Receive actions both
receive a message and set a variable. We can pretend that the receipt of a message
occurred when a priest acted upon the message; if he left the Chamber before act-
ing upon it, then we can pretend that the message was never received. Since this
pretense does not affect the consistency condition, we can infer the consistency of
the basic Synod protocol from the consistency of the algorithm.

A2 Proof of Consistency

To prove the consistency condition, it is necessary to show that whenever outcome[p]
and outcome[q] are both different from blank, they are equal. A rigorous correct-
ness proof requires a complete description of the algorithm. The description given
above is almost complete. Missing is a variable M whose value is the multiset of
all messages in transit.15 Each Send action adds a message to this multiset and
each Receive action removes one. Also needed are actions to represent the loss
and duplication of messages, as well as a Forget action that represents a priest
losing his slip of paper.

With these additions, we get an algorithm that defines a set of possible behaviors,
in which each change of state corresponds to one of the allowed actions. The Paxons
proved correctness by finding a predicate I such that

(1) I is true initially.
(2) I implies the desired correctness condition.
(3) Each allowed action leaves I true.

The predicate I was written as a conjunction I1∧. . .∧I7, where I1–I5 were in turn
the conjunction of predicates I1(p)–I5(p) for all priests p. Although most variables
are mentioned in several of the conjuncts, each variable except status[p] is naturally
associated with one conjunct, and each conjunct can be thought of as a constraint
on its associated variables. The definitions of the individual conjuncts of I are given
below, where a list of items marked by ∧ symbols denotes the conjunction of those
items. The variables associated with a conjunct are listed in bracketed comments.

I1(p) Δ= [Associated variable: outcome [p] ]

(outcome[p] �= blank) ⇒ ∃B ∈ B : (Bqrm ⊆ Bvot) ∧ (Bdec = outcome[p])

I2(p) Δ= [Associated variable: lastTried [p] ]

∧ owner(lastTried [p]) = p
∧ ∀B ∈ B : (owner(Bbal) = p) ⇒

∧ Bbal ≤ lastTried [p]
∧ (status[p] = trying) ⇒ (Bbal < lastTried [p])

15A multiset is a set that may contain multiple copies of the same element.



I3(p) Δ= [Associated variables: prevBal [p], prevDec[p], nextBal [p] ]

∧ prevBal [p] = MaxVote(∞, p, B)bal
∧ prevDec[p] = MaxVote(∞, p, B)dec
∧ nextBal [p] ≥ prevBal [p]

I4(p) Δ= [Associated variable: prevVotes[p] ]

(status[p] �= idle) ⇒
∀v ∈ prevVotes[p] : ∧ v = MaxVote(lastTried [p], vpst , B)

∧ nextBal [vpst ] ≥ lastTried [p]

I5(p) Δ= [Associated variables: quorum[p], voters[p], decree [p] ]

(status[p] = polling) ⇒
∧ quorum[p] ⊆ {vpst : v ∈ prevVotes [p]}
∧ ∃B ∈ B : ∧ quorum[p] = Bqrm

∧ decree[p] = Bdec

∧ voters[p] ⊆ Bvot

∧ lastTried [p] = Bbal

I6 Δ= [Associated variable: B ]

∧ B1(B) ∧ B2(B) ∧ B3(B)
∧ ∀B ∈ B : Bqrm is a majority set

I7 Δ= [Associated variable: M ]

∧ ∀NextBallot(b) ∈ M : (b ≤ lastTried [owner(b)])
∧ ∀LastVote(b, v) ∈ M : ∧ v = MaxVote(b, vpst , B)

∧ nextBal [vpst ] ≥ b

∧ ∀BeginBallot (b, d) ∈ M : ∃B ∈ B : (Bbal = b) ∧ (Bdec = d)
∧ ∀Voted(b, p) ∈ M : ∃B ∈ B : (Bbal = b) ∧ (p ∈ Bvot)
∧ ∀Success(d) ∈ M : ∃p : outcome[p] = d �= blank

The Paxons had to prove that I satisfies the three conditions given above. The
first condition, that I holds initially, requires checking that each conjunct is true for
the initial values of all the variables. While not stated explicitly, these initial values
can be inferred from the variables’ descriptions, and checking the first condition is
straightforward. The second condition, that I implies consistency, follows from I1,
the first conjunct of I6, and Theorem 1. The hard part was proving the third
condition, the invariance of I, which meant proving that I is left true by every
action. This condition is proved by showing that, for each conjunct of I, executing
any action when I is true leaves that conjunct true. The proofs are sketched below.

I1(p) B is changed only by adding a new ballot or adding a new priest to Bvot for
some B ∈ B, neither of which can falsify I1(p). The value of outcome[p] is changed
only by the Succeed and Receive Success Message actions. The enabling con-
dition and I5(p) imply that I1(p) is left true by the Succeed action. The enabling
condition, I1(p), and the last conjunct of I7 imply that I1(p) is left true by the
Receive Success Message action.



I2(p) This conjunct depends only on lastTried [p], status[p], and B. Only the Try
New Ballot action changes lastTried [p], and only that action can set status[p] to
trying. Since the action increases lastTried [p] to a value b with owner(b) = p,
it leaves I2(p) true. A completely new element is added to B only by a Start
Polling action; the first conjunct of I2(p) and the specification of the action imply
that adding this new element does not falsify the second conjunct of I2(p). The
only other way B is changed is by adding a new priest to Bvot for some B ∈ B,
which does not affect I2(p).

I3(p) Since votes are never removed from B, the only action that can change
MaxVote(∞, p, B) is one that adds to B a vote cast by p. Only a Receive
BeginBallot Message action can do that, and only that action changes prevBal [p]
and prevDec[p]. The BeginBallot conjunct of I7 implies that this action actually
does add a vote to B, and B1(B) (the first conjunct of I6) implies that there is only
one ballot to which the vote can be added. The enabling condition, the assump-
tion that I3(p) holds before executing the action, and the definition of MaxVote
then imply that the action leaves the first two conjuncts of I3(p) true. The third
conjunct is left true because prevBal [p] is changed only by setting it to nextBal [p],
and nextBal [p] is never decreased.

I4(p) This conjunct depends only upon the values of status[p], prevVotes [p],
lastTried [p], nextBal [q] for some priests q, and B. The value of status[p] is changed
from idle to not idle only by a Try New Ballot action, which sets prevVotes [p] to
∅, making I4(p) vacuously true. The only other actions that change prevVotes [p]
are the Forget action, which leaves I4(p) true because it sets status[p] to idle,
and the Receive LastVote Message action. It follows from the enabling condi-
tion and the LastVote conjunct of I7 that the Receive LastVote Message ac-
tion preserves I4(p). The value of lastTried [p] is changed only by the Try New
Ballot action, which leaves I4(p) true because it sets status[p] to trying. The
value of nextBal [q] can only increase, which cannot make I4(p) false. Finally,
MaxVote(lastTried [p], vpst , B) can be changed only if vpst is added to Bvot for
some B ∈ B with Bbal < lastTried [p]. But vpst is added to Bvot (by a Receive
BeginBallot Message action) only if nextBal [vpst ] = Bbal , in which case I4(p)
implies that Bbal ≥ lastTried [p].

I5(p) The value of status[p] is set to polling only by the Start Polling action.
This action’s enabling condition guarantees that the first conjunct becomes true,
and it adds the ballot to B that makes the second conjunct true. No other action
changes quorum[p], decree[p], or lastTried [p] while leaving status[p] equal to polling.
The value of prevVotes [p] cannot be changed while status[p] = polling , and B is
changed only by adding new elements or by adding a new priest to Bvot . The only
remaining possibility for falsifying I5(p) is the addition of a new element to voters[p]
by the Receive Voted Message action. The Voted conjunct of I7, B1(B) (the
first conjunct of I6), and the action’s enabling condition imply that the element
added to voters[p] is in Bvot , where B is the ballot whose existence is asserted in
I5(p).

I6 Since Bbal and Bqrm are never changed for any B ∈ B, the only way B1(B),
B2(B), and the second conjunct of I6 can be falsified is by adding a new ballot to



B, which is done only by the Start Polling Majority Set Q action when status[p]
equals trying. It follows from the second conjunct of I2(p) that this action leaves
B1(B) true; and the assertion, in the enabling condition, that Q is a majority set
implies that the action leaves B2(B) and the second conjunct of I6 true. There
are two possible ways of falsifying B3(B): changing MaxVote(Bbal , Bqrm , B) by
adding a new vote to B, and adding a new ballot to B. A new vote is added
only by the Receive BeginBallot Message action, and I3(p) implies that the
action adds a vote later than any other vote cast by p in B, so it cannot change
MaxVote(Bbal , Bqrm , B) for any B in B. Conjunct I4(p) implies that the new ballot
added by the Start Polling action does not falsify B3(B).

I7 I7 can be falsified either by adding a new message to M or by changing the
value of another variable on which I7 depends. Since lastTried [p] and nextBal [p]
are never decreased, changing them cannot make I7 false. Since outcome[p] is never
changed if its value is not blank, changing it cannot falsify I7. Since B is changed
only by adding ballots and adding votes, the only change to it that can make I7
false is the addition of a vote by vpst that makes the LastVote(b, v) conjunct false by
changing MaxVote(b, vpst , B). This can happen only if vpst votes in a ballot B with
Bbal < b. But vpst can vote only in ballot number nextBal [vpst ], and the assumption
that this conjunct holds initially implies that nextBal [vpst ] ≥ b. Therefore, we need
check only that every message that is sent satisfies the condition in the appropriate
conjunct of I7.

NextBallot: Follows from the definition of the Send NextBallot Message action
and the first conjunct of I2(p).

LastVote: The enabling condition of the Send LastVote Message action and
I3(p) imply that MaxVote(nextBal [p], p, B) = MaxVote(∞, p, B), from which it
follows that the LastVote message sent by the action satisfies the condition in I7.

BeginBallot: Follows from I5(p) and the definition of the Send BeginBallot
Message action.

Voted: Follows from I3(p), the definition of MaxVote, and the definition of the
Send Voted Message action.

Success: Follows from the definition of Send Success Message.


